

DCS 334 Computer Science Project

A Program Slicing Tool for Analysing Java Programs

Final Report
28 April 2003

Version 1

Prepared By: Kia Abdullah

Supervisor: Pasquale Malacaria

Abstract:

The Final Report presents the JSlicer: A Program Slicing Tool for Analysing Java
Programs that has been developed as part of the DCS 334 Computer Science
Project. This report outlines the aims of the system, details the basic concepts of
program slicing and specifies the system requirements. It describes the design
methodology that will be used to implement the tool and provides a critical review of
the end product. A user manual and plans for future development are also presented.

Final Report v1.0 Kia Abdullah

April 2003 Page 2 of 50

Disclaimer

This report is submitted as part requirement for the degree of BSc in Computer
Science at the University of London. It is the product of my own labour except where
indicated in the text. The report may be freely copied and distributed provided the
source is acknowledged.

Signature: ____________________

Final Report v1.0 Kia Abdullah

April 2003 Page 3 of 50

Acknowledgements

I would like to take this opportunity to thank my Project Supervisor Pasquale
Malacaria for his support and advice throughout the course of the project.

Final Report v1.0 Kia Abdullah

April 2003 Page 4 of 50

Contents

1. Introduction ... 5
2. Background ... 6

2.1 Overview of Program Slicing .. 6
2.2 Applications of Program Slicing ... 9
2.3 Implementing Program Slicing ... 10

3. Requirements Analysis .. 15
3.1 Requirement Gathering .. 15
3.2 Existing Solutions .. 15
3.3 An Ideal Solution .. 16

4. Specification .. 17
5. Design and Implementation ... 18

5.1 Class Diagram ... 18
5.2 Program Structure ... 19
5.3 Description of Components .. 21

6. Testing .. 29
6.1 Unit Testing ... 29
6.2 Black Box Testing .. 30
6.3 User/Beta Testing: ... 30
6.4 Stress/Performance Testing: .. 30

7. Evaluation ... 32
7.1 Review of Project ... 32
7.2 Future Extensions .. 34

8. Conclusion .. 36
9. References .. 37

Appendix A – User Manual .. 38
Appendix B – Design Document .. 47
Appendix C – System Manual ... 49

Final Report v1.0 Kia Abdullah

April 2003 Page 5 of 50

 1. Introduction

Aim: The aim of this project is to develop a Program Slicing tool (the JSlicer) to aid
the analysis of Java programs. The slice of a program with respect to a program
statement S is a projection of the program that includes only those program
statements that may affect (either directly or indirectly) the values of the variables
used at S. Slicing allows one to find semantically meaningful decompositions of
programs, where the decompositions consist of program statements that are not
textually contiguous.

The application of program slicing to the evaluation of high integrity software reduces
the effort in examining software by allowing a software reviewer to focus attention on
one computation at a time. Instead of examining the entire program, one needs to
examine only the statements in the slice. By speeding up the process of locating
relevant code for examination, a larger sample of software can be inspected with
greater confidence that a relevant section of source code has not been missed. The
concept of program slicing is described in detail in Section 2 – Background.

The remainder of this document has been divided into the following main sections:

Section 2: Background
This section provides detailed background information on Program Slicing. It details
the basic concepts of the problem being addressed and describes the algorithms,
techniques and methodology that will be used to implement the solution.

Section 3: Requirements Analysis
This section describes each phase of the requirements analysis. It provides an
analysis of existing solutions and describes how an ideal solution would better meet
the needs of the user.

Section 4: Specification
The Specification provides the terms of reference by which the success of the project
will be measured. It specifies the functionality that should be incorporated into the
completed version of the system.

Section 5: Design and Implementation
The Design section describes the high level architecture of the system. It details the
key design features of the program and provides justification for the design decisions
taken.

Section 6: Testing
This section details the types of testing that will be carried out on the system to
ensure that it is fully functional and error-free.

Section 7: Evaluation
The Evaluation provides a critical review of the completed system and describes
possible extensions of the system.

Section 8: Conclusion
Section 8 provides the final conclusion of the project. It outlines the overall success
of the project and the achievements made.

Final Report v1.0 Kia Abdullah

April 2003 Page 6 of 50

2. Background

This section describes the background of the problem domain of the project. It details
the basic concepts of the problem being addressed and describes the algorithms,
techniques and methodology that will be used to implement the solution.

2.1 Overview of Program Slicing

The original definition of a program slice was presented by Mark Weiser in 1979 [11].
Since then, various different notions of program slices have been proposed, as well
as a number of methods to compute them. In Weiser’s terminology, a slicing criterion
is a pair <p,V>, where p is a program point and V is a subset of the program’s
variables.

In Weiser’s work, a slice consists of all statements and predicates of the program that
might affect the values of variables in V at point p. This is a more general kind of slice
than is often needed. Rather than a slice taken with respect to program point p and
an arbitrary variable, one is often interested in a slice taken with respect to a variable
x that is defined or used at p. The criterion in the JSlicer will therefore be comprised
of the line number of the statement and a set of variables defined or used at S.

• The value of a variable x defined at p is directly affected by the values of the

variables used at p and by the loops and conditionals that enclose p.
• The value of a variable y used at p is directly affected by assignments to y that

reach p and by the loops and conditionals that enclose p.

There are five basic concepts in Program Slicing:

• Predecessors

• Successors

• Backward Slicing

• Forward Slicing

• Chopping

Sections 2.1.1 to 2.1.5 use the code fragment given in Figure 1 to describe these five
concepts in detail.

1 int n = 5;

2 int sum = 0;

3 int assign = 0;

4 int i = 0;

5 while(i<n)

{

6 assign = i;

7 sum = sum+assign;

8 i++;

}

9 System.out.println(sum);

Figure 1: Code Fragment

Final Report v1.0 Kia Abdullah

April 2003 Page 7 of 50

2.1.1 Predecessors

There are two types of predecessors: data predecessors and control predecessors.

Data predecessors are the assignments of values that may be used by a given
statement. The data predecessors of a slicing criterion are all preceding statements
that may affect the value of the variable in the criterion. Figure 2.a) shows the data
predecessors of the criterion (7, sum).

Control predecessors are the control points that may affect whether a given
statement gets executed. Figure 2.b) shows the control predecessors of the criterion
(7, sum).

1 int n = 5;

2 int sum = 0;

3 int assign = 0;

4 int i = 0;

5 while(i<n)

 {

6 assign = i;

7 sum = sum+assign;

8 i++;

 }

9 System.out.println(sum);

a) Data Predecessors

1 int n = 5;

2 int sum = 0;

3 int assign = 0;

4 int i = 0;

5 while(i<n)

 {

6 assign = i;

7 sum = sum+assign;

8 i++;

}

9 System.out.println(sum);

b) Control Predecessors

Figure 2: Predecessors of (7, sum)

2.1.2 Successors:

There are also two types of successors: data successors and control successors.

Data successors are the possible users of values assigned by a given statement.
The data successors of a slice criterion are all statements that may be affected by
the value of the variable in the criterion. Figure 3.a) shows the data successors of (2,
sum).

Control successors are the statements whose execution depends on the control
decision made at a given statement. Figure 3.b) shows the control successors of
statement 5.

1 int n = 5;

2 int sum = 0;

3 int assign = 0;

4 int i = 0;

5 while(i<n)

 {

9 assign = i;

10 sum = sum+assign;

11 i++;

 }

9 System.out.println(sum);

a) Data Successors

1 int n = 5;

2 int sum = 0;

3 int assign = 0;

4 int i = 0;

5 while(i<n)

 {

6 assign = i;

7 sum = sum+assign;

8 i++;

 }

9 System.out.println(sum);

b) Control Successors

Figure 3: Data and Control Successors

Final Report v1.0 Kia Abdullah

April 2003 Page 8 of 50

2.1.3 Backward Slicing:

The backward slice from a program point p includes all points that may influence
whether control reaches p, and all points that may influence the values of the
variables used at p when control gets there. Figure 4.a) shows the backward slice
from statement 5.

2.1.4 Forward Slicing:

The forward slice from a program point p includes all program points affected by the
computation or conditional test at p. Figure 4.b) shows the forward slice from
statement 5. Line 9 is included in this slice because line 5 affects whether line 7 is
executed or not which in turn affects the value of sum at line 9.

1 int n = 5;

2 int sum = 0;

3 int assign = 0;

4 int i = 0;

5 while(i<n)

 {

6 assign = i;

7 sum = sum+assign;

8 i++;

 }

9 System.out.println(sum);

a) Backward Slice

1 int n = 5;

2 int sum = 0;

3 int assign = 0;

4 int i = 0;

5 while(i<n)

 {

6 assign = i;

7 sum = sum+assign;

8 i++;

 }

9 System.out.println(sum);

b) Forward Slice

Figure 4: Slices from Statement 5.

2.1.5 Chopping:

A chop shows the influence of one set of program points (the chop source) on
another (the chop target). This query can be used to determine the information flow
between two program points or to show that two parts of the program are
independent. If the chop between two program points is empty then the two points
are independent.

Figure 5.a) shows that the program points at lines 2 and 5 are independent; line 2
does not affect the execution of line 5 in any way. Figure 5.b) on the other hand
shows that lines 1 and 6 are not independent as the chop between them is not
empty.

1 int n = 5;

2 int sum = 0;

3 int assign = 0;

4 int i = 0;

5 while(i<n)

 {

6 assign = i;

7 sum = sum+assign;

8 i++;

 }

9 System.out.println(sum);

a) Source and Target are independent

1 int n = 5;

2 int sum = 0;

3 int assign = 0;

4 int i = 0;

5 while(i<n)

 {

6 assign = i;

7 sum = sum+assign;

8 i++;

 }

9 System.out.println(sum);

b) Source and Target are not independent

Figure 5: Chopping

Final Report v1.0 Kia Abdullah

April 2003 Page 9 of 50

2.2 Applications of Program Slicing

Program Slicing has applications in debugging, testing, program restructuring and
program understanding. This section describes some examples of how slicing helps
with these tasks:

Program Debugging

Instead of examining the entire program, one needs to examine only the statements
in the slice. By speeding up the process of locating relevant code for examination, a
larger sample of software can be inspected with greater confidence that a relevant
section of source code has not been missed.

Testing

Suppose a proposed program modification only changes the value of variable v at
program point p. If the forward slice with respect to v and p is disjoint from the
coverage of regression test t, then test t does not have to be rerun. Suppose a
coverage tool reveals that a use of variable v at program point p has not been tested.
What input data is required in order to cover p? The answer lies in the backward slice
of v with respect to p.

Program Restructuring

Slicing isolates “computational threads”, which identifies logical components. The
threads can be extracted and either replaced or used to create new programs.

Program Understanding

Slicing can be used to help programmers understand code. For example, a backward
slice from a point in the program identifies all parts of the code that contribute to that
point. A forward slice identifies all parts of the code that can be affected by the
modification to the code at the slice point.

Program Specialization and Reuse

Executable slices can be thought of as specialized programs. Slices can be used to
make code reuse more efficient. Instead of reusing an entire package, a slice can be
used to identify only those parts that are really needed.

Final Report v1.0 Kia Abdullah

April 2003 Page 10 of 50

2.3 Implementing Program Slicing

This section presents the algorithms, techniques and methodology that will be used
to implement the program slicing tool.

Ottenstein and Ottenstein [8] restated the problem introduced by Weiser in terms of a
reachability problem in a Program Dependence Graph (PDG). When slicing a
program that consists of a single procedure (Intraprocedural slicing), the slicing
problem is simply a vertex reachability problem.

The work of Reps, Horwitz and Binkley [5] is concerned with the problem of
Interprocedural slicing – generating a slice of an entire program where the slice
crosses the boundaries of procedure calls. Their work follows the example of
Ottenstein and Ottenstein by defining the slicing algorithm in terms of operations on a
dependence graph. To solve the interprocedural slicing, Reps, Horwitz and Binkley
use a System Dependence Graph (SDG). An SDG is a directed graph consisting of
interconnected PDG’s. In order to fully understand the operation of an SDG, we must
first examine the construction of PDG’s.

2.3.1 Program Dependence Graphs

A PDG is a directed graph with vertices corresponding to program statements and
edges corresponding to data and control dependences.

• Data dependence
Node j is dependent on node i if there exists a variable x such that x is
defined at node i; x is referenced at node j and there exists a path from i to j
with no intervening definitions of x.

• Control dependence:
Program point P2 is dependent on P1 if P1 is a condition and getting to P2
depends on whether P1 tests true or false.

The slicing criterion is identified with a vertex in the PDG and a slice corresponds to
all PDG vertices from which the vertex under consideration can be reached.

Final Report v1.0 Kia Abdullah

April 2003 Page 11 of 50

To further explain the idea of a PDG, we shall use the following code fragment as an
example:

1 n = 10

2 i = 1;

3 sum = 0;

4 product = 1;

5 while(i<=n)

{

6 sum = sum + 1;

7 product = product * i;

8 i = i + 1;

}

9 System.out.println(sum);

10 System.out.println(product);

Figure 6: Code Fragment.

Figure 7 below shows the corresponding PDG. The vertices with respect to slice
criterion (10, product) are shown shaded. All statements that do not affect the
variable product will be sliced away. The resulting statements in the slice are shown
in Figure 8.

Figure 7: PDG of the program in Figure 6.

1 n = 10

2 i = 1;

3

4 product = 1;

5 while(i<=n)

{

6

7 product = product * i;

8 i = i + 1;

}

9

10 System.out.println(product);

Figure 8: Program slice of Figure 6 w.r.t (10, product).

Final Report v1.0 Kia Abdullah

April 2003 Page 12 of 50

2.3.2 System Dependence Graphs

Horwitz, Reps, and Binkley [5] introduce the notion of a System Dependence Graph
(SDG) for slicing multi-procedure programs. Parameter passing between methods is
modelled in Figure 9 and described below:

(a) At a, the calling procedure copies its actual parameters to temporary variables.
(b) The formal parameters of the called procedure are initialized using the

corresponding temporary variables.
(c) Before returning, the called procedure copies the final values of the formal

parameters to the temporary variables.
(d) After returning, the calling procedure updates the actual parameters by copying

the values of the corresponding temporary variables.

Figure 9: Parameter passing between two methods

An SDG contains a PDG for each method. There are several types of vertices and
edges in an SDG which do not occur in the original PDGs:

• For each call statement, there is a call-site vertex in the SDG.

• There are actual-in and actual-out vertices which model the copying of actual
parameters to/from temporary variables (a, and d in Figure 9).

• An entry vertex is added to each PDG, along with formal-in and formal-out
vertices to model copying of formal parameters to/from temporary variables (b
and c in Figure 9).

Actual-in and actual-out vertices are control dependent on the call-site vertex; formal-
in and formal-out vertices are control dependent on the procedure's entry vertex. In
addition to these intraprocedural dependence edges, an SDG contains the following
interprocedural dependence edges:

• A call edge between a call-site vertex and the entry vertex of the called PDG.

• A parameter-in edge between corresponding actual-in and formal-in vertices.

• A parameter-out edge between corresponding formal-out and actual-out vertices.

The slicing is accomplished by traversing the graph in two phases.

Phase 1
Suppose that slicing starts at vertex s. The first phase determines all vertices from
which s can be reached without descending into procedure calls. The transitive
interprocedural dependence edges guarantee that calls can be side-stepped, without
descending into them.

Final Report v1.0 Kia Abdullah

April 2003 Page 13 of 50

Phase 2
In the second phase, the algorithm descends into all previously side-stepped calls
and determines the remaining vertices in the slice. Using interprocedural dataflow
analysis, the sets of variables which can be referenced or modified by a procedure
can be determined. This information can be used to eliminate actual-out and formal-
out vertices for parameters that will never be modified, resulting in more precise
slices.

The multi-procedure program shown in Figure 10 will be used to illustrate the idea
how an SDG is constructed.

public static void Entry()

{

1 n = 10;

2 i = 1;

3 sum = 0;

4 product = 1;

5 while(i<=n)

{

6 Add(sum, i);

7 Add(i,1);

8 product = i;

}

9 System.out.println(sum);

10 System.out.println(product);

}

public static void Add(a,b)

{

11 a = a + b;

}

Figure 10: Example of a multi-procedure program.

Figure 11 below shows the corresponding SDG. The vertices with respect to slice
criterion (10, product) are shown shaded. Light shading indicates the vertices
identified in the first phase of the algorithm, and dark shading indicates the vertices
identified in the second phase.

Figure 11: SDG of the program in Figure 10.

Final Report v1.0 Kia Abdullah

April 2003 Page 14 of 50

2.3.3 An Algorithm for Interprocedural Slicing

Figure 12 below shows the algorithm for interprocedural slicing given in [5].

Figure 12: Algorithm for Interprocedural Slicing
The procedure MarkVerticesOfSlice marks the vertices of the interprocedural slice G / S. The auxiliary procedure
MarkReachingVertices marks all vertices in G from which there is a path to a vertex in V along edges of kinds other
than those in the set Kinds.

The key element of the approach presented in [5] is the use of the linkage grammar’s
characteristic graph edges in the SDG. These edges represent transitive data
dependencies from actual-in vertices to actual-out vertices due to procedure calls.
The presence of such edges permits the slicing algorithm to sidestep the “calling
context”; the algorithm can move “across” a call without having to descend into it.

As outlined in the previous section, the algorithm presented in Figure 12 computes
the slice of a system dependence graph G with respect to vertex S in two phases.
Phase 1 involves the traversal of flow edges, control edges, call edges and
parameter-in edges but does not follow parameter-out edges. Phase two follows flow
edges, control edges and parameter-out edges but does not follow call edges or
parameter-in edges. The result of an interprocedural slice consists of the sets of
vertices identified by Phase 1 and Phase 2, and the set of edges induced by this
vertex set.

procedure MarkVerticesOfSlice(G, S)

declare

G: a system dependence graph

S, S1: sets of vertices in G

begin

//Phase 1: Slice without descending into called methods

MarkReachingVertices(G, S, {def-order, parameter-in, call})

//Phase 2: Slice called methods without ascending to call sites

S1 = all marked vertices in G

MarkReachingVertices(G, S, {def-order, parameter-out})

end

procedure MarkReachingVertices(G, V, Kinds)
declare

G: a system dependence graph

V: a set of vertices in G

Kinds: a set of kinds of edges

v, w: vertices in G

WorkList: a set of vertices in G

begin

WorkList = V

while WorkList !=0 do

//Select and remove a vertex v from WorkList

Mark v

for each unmarked vertex w such that there is an edge (w,v)

whose kind is not in Kinds do

Insert w into WorkList

endfor

endwhile
end

Final Report v1.0 Kia Abdullah

April 2003 Page 15 of 50

3. Requirements Analysis

This section describes each phase of the requirements analysis. It provides an
analysis of existing solutions and describes how an ideal solution would better meet
the needs of the user.

3.1 Requirement Gathering

Requirement gathering has been performed in two main stages. The first stage
involved extensive research into the background material available about program
slicing. Various materials such as research papers, tutorials and special-interest
forums equipped me with a broad understanding of program slicing and the basic
functions that should be present in a program slicing tool. The information gathered
from this phase has been given in Section 2 – Background Material.

The second stage of requirements gathering involved the analysis of existing
program slicing tools. It is important to evaluate existing solutions in order to
ascertain which features are useful and which are ineffective. The features that meet
the needs of the user well will be incorporated into the JSlicer whereas poorly
designed features can be omitted or improved. The results of this stage of
requirements analysis are outlined in Section 3.2 and have been used to construct
the list of requirements given in the System Specification.

3.2 Existing Solutions

There are several existing program slicing tools designed to slice programs written in
ANSI C. After extensive research, I have determined that there is only one existing
tool for slicing Java programs. This section evaluates this tool along with a
commercial tool designed to slice programs written in C.

3.2.1 Bandera

The Bandera Model Checker is a collection of program analysis, transformation, and
visualisation components for model-checking Java source code.

The slicer in Bandera is only a small part of a much larger and more complex system.
The input of the slicer is a Jimple representation of Java program, which is performed
by JJJC (Java to Jimple to Java Compiler [13]), and slicing points specified by users.

The current slicer in Bandera can only produce Jimple code which then has to be
translated back into Java. Along with this drawback, Bandera also has the following
limitations:

• The slicer cannot be used as a standalone application.

• Case statements cannot be dealt with in the process of control dependency
analysis.

• The current slicer is not considering any dependence analysis in the presence of
exception handling. As a result of this limitation, the residual program will keep all
original exceptions and their handlers.

An ideal system would integrate flow analysis into the current slicer to make virtual
method resolving more precise. It would also involve case statements in dependency
analysis, as this is a common structure used in Java.

Final Report v1.0 Kia Abdullah

April 2003 Page 16 of 50

3.2.2 CodeSurfer

CodeSurfer is a commercially available program slicing tool used to analyse
programs written in ANSI C. CodeSurfer is based on system dependence graphs
(described in Section 2.3.2) and includes the following functionality:

• A Dependence Analyser and Program Slicer

• Multiple Query Modes:
- Point mode lets you pose queries in terms of points in the program, but the

variables that are used/defined at the points are not distinguished.

- Variable mode lets you pose queries in terms of the variables in the
program, and lets you ask separately about declarations, assignments,
uses, or references.

- Variable-point mode lets you pose queries in terms of the variables that are
used or defined at particular points in the program.

- Function mode lets you pose queries in terms of the functions in the
program.

• Pointer Analysis: CodeSurfer performs pointer analysis so that complex, indirect
dependency relationships can be identified and navigated as easily.

The examination of these features is a useful way of setting a standard for the
JSlicer. CodeSurfer uses System Dependence Graphs to implement program slicing
and can therefore be used as a basis for the JSlicer. Of course, CodeSurfer only
slices programs written in C and therefore has a limited amount of usefulness when
designing a program slicing tool for Java programs.

3.3 An Ideal Solution

An ideal solution would use a combination of the best features from existing solutions
to provide the user with the best system possible. An ideal solution would:

• Primarily be used as a standalone application but would have all important
methods available as an API that can be used with other programs.

• Incorporate a Parser that recognises and parses any Java construct.

• Perform pointer analysis so that complex, indirect dependency relationships can
be identified and navigated as easily.

• Create accurate slices as efficiently as possible.

Due to time constraints, the JSlicer may not incorporate every element stated above.
A critical review of the system is provided in Section 7 – Evaluation. The review
compares the final completed system against the Ideal Solution and the list of
requirements given in the Specification.

Final Report v1.0 Kia Abdullah

April 2003 Page 17 of 50

4. Specification

The Specification provides the terms of reference by which the success of the project
will be measured. It specifies the functionality that should be incorporated into the
completed version of the system. Each requirement is listed in Table 1 shown below.

No. Description
1 Start a new Project: This should allow the user to work with a set of files

separate from existing/currently open files.

2 Open a File/Project: The user must be able to open one or more Java source
files whilst working on a project.

3 Build a System Dependence Graph (SDG): The system should be able to
build an SDG from the current source files.

4 Allow user to choose criteria: The user must be able to choose the slice
criteria from a source file.

5 Allow user to choose slicing option: The user must be able to choose a
slicing option through the user interface and run the project.

6 Determine data successors and predecessors: The system must be able to
determine the Data Successors or Predecessors of a slice criterion.

7 Determine control successors/predecessors: The system must be able to
determine the Data Successors or Predecessors of a slice criterion.

8 Perform backward slicing: The system must be able to perform
interprocedural backward slicing on a given slice criterion.

13 Perform forward slicing: The system must be able to perform interprocedural
backward slicing on a given slice criterion.

14 Perform chopping: The system should be able to perform interprocedural
chopping on a given slice criterion.

11 Display slice to the user: The system must display a program slice in a
manner easily identifiable by user.

12 Save current project: The system should save any open source files, the SDG
and any open slices in a folder.

13 Provide an on-line help system: The application should be supported with a
comprehensive on-line help manual covering every aspect of the application,
and application interface.

14 API: It should be possible for third party developers to access the key (non-
GUI) functionality via a package with appropriate public methods and Java
documentation.

Table 1: System Requirements

Final Report v1.0 Kia Abdullah

April 2003 Page 18 of 50

5. Design and Implementation

5.1 Class Diagram

An important requirement of the JSlicer is that it should be possible for third party
developers to access the key functionality via packages with appropriate public
methods. The Model-View-Controller design pattern will be used to ensure the
decoupling of the API from the GUI implementation. This concept will be further
explained in Section 5.2 – Program Structure.

The structure of the system has therefore been divided into a model package, a View
package and a Controller package. A package overview is provided in Figure 13
showing these three packages along with the IO and JSlicer packages. For detailed
class diagrams of each package please refer to Appendix 2 – Design Document.

Figure 13: Package Overview

JSlicer.IOJSlicer.IOJSlicer.IOJSlicer.IO
+SerialiseOpen
+IOOperations
+SuffixFileFilter
+SerialiseSave
+Filechooser
+SaveFilechooser

JSlicer.ModelJSlicer.ModelJSlicer.ModelJSlicer.Model
BuilderBuilderBuilderBuilder
ParserParserParserParser
SlicerSlicerSlicerSlicer

JSlicer.ViewJSlicer.ViewJSlicer.ViewJSlicer.View
+UIStatusBar
+UISlicingMenu
+UIFrame
+UICriteriaDialog
+UISourceViewer
+UIMenuBar
+UIFileViewer
+UIToolBar
+UISliceView
+UIFileMenu
+UIHelpMenu

JSlicer.ControllerJSlicer.ControllerJSlicer.ControllerJSlicer.Controller
+ForwardAction
+SliceOptionAction
+SaveAllAction
+CloseProjectAction
+PredecessorsAction
+ExitAction
+NewAction
+BuildAction
+SaveAction
+HelpAboutAction
+CriteriaDialogAction
+CriteriaAction
+ChoppingAction
+BackwardAction
+CloseFileAction
+TestAction
+HelpTopicsAction
+OpenAction
+CloseWinAction
+DataControlAction
+SaveAsAction
+SuccessorsAction

JSlicerJSlicerJSlicerJSlicer
ControllerControllerControllerController
IOIOIOIO
ModelModelModelModel
ViewViewViewView
+ApplicationMain

Final Report v1.0 Kia Abdullah

April 2003 Page 19 of 50

5.2 Program Structure

This section presents a detailed description of the program structure and key design
features of the JSlicer.

5.2.1 Model-View-Controller

The Model-View-Controller (MVC) design pattern will be used to structure the JSlicer.
The methods defined in the Parser, Builder and Slicer will be available as an API to
third party programmers. In order to implement this, we must ensure that the API and
GUI packages are fully decoupled. MVC incorporates several other design patterns
in order to provide the programmer with a useful way of decoupling subsystems and
ensuring flexibility.

In the MVC paradigm the user input, the modelling of the external world and the
visual feedback to the user are explicitly separated and handled by three types of
object (as shown in Figure 14), each specialized for its task.

• Model: The core of the application. This maintains the state and data of the
application domain. It responds to requests for information about its state (usually
from the view), and to instructions to change state (usually from the controller).

• View: The user interface which displays information about the model to the user.

• Controller: The user interface presented to the user to manipulate the
application. It interprets the mouse and keyboard inputs from the user and
commands the model and/or the view to change as appropriate.

The model object knows about all the data that needs to be displayed but it knows
nothing about the GUI or the manner in which the data are to be displayed. The data
are accessed and manipulated through methods that are independent of the GUI.
This ensures that the GUI and the API are fully decoupled.

The formal separation of these three tasks is an important notion that is particularly
suited to the JSlicer where the basic behaviour can be embodied in abstract objects:
Model, View and Controller. The MVC behaviour is then inherited, added to and
modified as necessary to provide a flexible and powerful system. Other advantages
offered by MVC are given in the next section.

Figure 14: The Model-View-Controller Relationship

Final Report v1.0 Kia Abdullah

April 2003 Page 20 of 50

5.2.2 Advantages of Model-View-Controller

Extensive research was carried out in order to determine the best program structure
for the JSlicer. The MVC architecture was chosen for a number of reasons. The most
significant advantages offered by MVC over other structural design patterns are
given below:

Clarity of design
The public methods in the model stand as an API for all the commands available to
manipulate its data and state. By glancing at the model's public method list, it should
be easy to understand how to control the model's behaviour. This trait makes the
system being developed easier to implement and maintain.

Efficient modularity
Efficient modularity of the design allows any of the components to be swapped in and
out as the user or programmer desires. The components of the system are
decoupled therefore changes to one aspect of the program do not affect other
aspects. Also, development of the various components can progress in parallel, once
the interface between the components is clearly defined.

Powerful user interfaces
Using the model's API, the user interface can combine the method calls when
presenting commands to the user. Macros can be seen as a series of "standard"
commands sent to the model, all triggered by a single user action. This allows the
program to present the user with a cleaner, friendlier interface.

5.2.3 Interfaces

Another key feature used to implement the system is the use of interfaces. Interfaces
are a powerful programming tool because they allow one to separate the definition of
objects from their implementation, allowing objects to evolve without risk of breaking
existing code.

Interfaces have been created for the classes in the Model package. These classes
contain methods which will be available as an API to third party programmers.
Interfaces provide programmers with the flexibility to change the way methods are
implemented safely. Interfaces eliminate a major problem of class inheritance: the
likelihood of breaking code when you make post-implementation changes to the
design.

Class inheritance forces one to make the majority of design decisions when the class
is first created. For example, if we define a method that expects an Integer argument,
and a third party programmer wishes to change the data type to long, they cannot
safely change the original class, because applications designed for classes derived
from the original may not compile correctly. This problem can be magnified because
a single base class can affect hundreds of subclasses.

One solution is to define a new method that overloads the original and that takes an
argument of type Long. However, this might not be satisfactory because a derived
class may need to override the method that takes the integer, and may not function
properly if the method that takes a Long is not overridden also. Interfaces solve this
problem by allowing one to publish an updated interface that accepts the new data
type hence providing users with the flexibility they need to change the application

Final Report v1.0 Kia Abdullah

April 2003 Page 21 of 50

5.4 Description of Components

This section presents a detailed description of each software component contained
within the architecture.

5.4.1 Model.Parser

The Parser package is responsible for parsing Java source code into a tree form
representing its internal structure. It does this in two phases using a combination of
an automatic parser and a hand crafted parser. Figure 15 shows an overview of the
processing detail of the Parser which is further explained in the subsequent sections.

Figure 15: Processing detail of the Parser

Phase 1: The first pass of the java file is made by an automatic parser generated by
a parser generator. ANLTR (Another Tool for Language Recognition) [12] generates
parsers based on a grammar defined by the user. The parser in Phase 1 creates an
Abstract Syntax Tree for each java file based on tokens defined in the grammar.

An automatic parser is used to increase the efficiency of the parsing. One drawback
however is that it does not provide us with the flexibility we need; the output trees
need to be changed from a token based format into a statement based format. This is
carried out by Phase 2 of the parsing process.

Phase 2: The second phase of tree construction uses a hand crafted parser to
transform the token based tree into a statement based tree. Each statement in the
java file corresponds to a node in the output tree. This tree is then passed to the
Builder.

Figure 16. a) shows the graph fragment produced by Phase 1 after parsing the
statement: double x1 =xVect*v.x. Node 2 in Figure 16.b) shows the output of
Phase 2 after parsing the output produced by Phase 1.

AST
Output:

Statement
Input:

Java File
Phase 1 Phase 2

Figure 16 b) Output of Phase 2 Figure 16 a) Output of Phase 1

Final Report v1.0 Kia Abdullah

April 2003 Page 22 of 50

5.4.2 Model.Builder

The Builder package takes one or more trees created by the Parser as input. These
trees consist of a set of Nodes. The information contained within a Node is vital to the
construction of the Program Dependence Graphs and the System Dependence
Graph.

A Node object is specified below:

lineNo: A unique identifier for each node.

statement: The Java statement that this node represents.

defines: The variable that this node defines.

uses: All variables that this node uses.

calls: The names of all methods that this node calls.

PDGParent: The name of the method that this node belongs to.

The Builder performs dependence analysis on the trees created by the Parser and
adds data and control dependence edges between the nodes in order to create a set
of Program Dependence Graphs (PDGs) which are then used to build the System
Dependence Graph. Figure 17 overleaf shows the algorithm used to build a PDG.

public Node(int lineNo, String statement, String defines,

Vector uses, Vector calls, String PDGParent)

Final Report v1.0 Kia Abdullah

April 2003 Page 23 of 50

Figure 17 shows the PDG Building Algorithm.

Figure 17: PDG Building Algorithm

procedure PDG(TreeList)
declare

TreeList: set of trees produced by the Parser

Pos: A counter that is used to iterate through TreeList

begin

while TreeList !=0 do

//Select and remove a tree from TreeList

Tree: the tree in TreeList at position pos

NodeList: The nodes contained in Tree

 while NodeList !=0 do

Select and remove a node n from NodeList

Defines: A string specifying the value defined at n

addEdges(NodeList, n, Defines, pos);

endwhile

pos++

endwhile

end

procedure addEdges(NodeList, n, define, position)
declare

NodeList: A list of all nodes in a tree

n: The node being tested for dependencies

defines: The variable that is defined at n

position: The position in NodeList where n resides

counter: position+1

begin

while NodeList !=0 do

//Select and remove a node n2 to compare with n

n2: The node in NodeList at counter

usesList: A list of all variable used at node n2

parentList: A list of all parent nodes of node n2

while useList !=0 do

 //Select and remove a use variable use from useList

If use = defines

 Add a data edge between n and n2

endif

endwhile

while parentList !=0 do

 //Select and remove a parentNode from parentList

If parentNode = n

 Add a control edge between n and n2

endif

endwhile

counter++

endwhile

end

Final Report v1.0 Kia Abdullah

April 2003 Page 24 of 50

The set of PDGs created by the algorithm given in Figure 15 is used to construct the
System Dependence Graph. During the creation of the PDG’s, if the Builder comes
across a node that calls another method, it creates a Call object and adds it to a
Vector callRecord.

A Call object is specified below:

calledPDG The PDG that contains the node that is making the call.

callingPDG The PDG that is being called.

lineNumber The line number of the node that is making the call.

The SDG takes the callRecord and the PDGList in as parameters. It then uses the
algorithm given in Figure 18 to add the appropriate edges between the PDGs to
create the SDG.

Figure 18: SDG Building Algorithm

Call(String callingPDG, int lineNumber, calledPDG)

procedure SDG(PDGList, callRecord)
declare

PDGList: set of PDGs created for the current project

CallRecord: all the calls made between the various PDGs

begin

 while callRecord !=0�do

//Select and remove a Call c from CallRecord

CalledPDG: The PDG that is making the call

CalledPDG: The PDG that is making the call

CallingPDG: The PDG that is making the call

lineNumber: The line number of the node making the call

n: The node in callingPDG with line Number=lineNumber

n2: The parent node of callingPDG

Add Call Edge from n to n2

//Create parameter in nodes for values passed from n to n2

Add control edges from n to act_in and act_out nodes

//Create parameter out nodes for parameters changed by n2

Add control edges from n2 to formal_in and formal_out nodes

Add parameter_in edges from act_in to formal_in nodes

Add parameter_out edges from formal_out to act_out nodes

Reset any dependencies

endwhile

end

Final Report v1.0 Kia Abdullah

April 2003 Page 25 of 50

5.4.3 Model.Slicer

The Slicer is responsible for performing slicing operations on the System
Dependence Graph. The Slice class creates a program slice using the algorithm
presented in Figure 12 in Section 2- Background.

A Slice object is specified below.

sdg The current build of the SDG

criteria A record of all the criteria that needs to be sliced upon.

isBackward Set to true if the slice is a backward slice.

isForward Set to true if the slice is a forward slice.

isData True if the slice is determining data successors or predecessors.

isControl True if the slice is determining control successors or predecessors.

The criteria are used to slice upon the SDG. Much of the same processing is needed
for each type of slice therefore we use a generalised “Slice” object with boolean flags
to specify what type of slice is needed. This prevents the repetition of the same code
in four different classes.

Java is an object-oriented language and therefore we are interested in statements
that define and use variables representing objects. If we are slicing upon a variable v
that refers to an object, the JSlicer currently obtains the statements that either assign
to v or use v. The JSlicer allows the user to choose whether they want to slice with
respect to “Definitions Only” or “Definitions and Uses”. The code fragment given in
Figure 19 is used to describe these two options.

Figure 19: Code Fragment

Option 1: Definitions Only

When performing a slice on a variable v at program point p, the slice will include only
assignments of values that v may affect or may be affected by. It will not include any
uses of v prior to p. For example, using the code fragment given in Figure 19, if we
perform a backward slice on Line 4, we will obtain only Line 1 as this line defines
frame.

public Slice(SDG sdg, Vector criteria, boolean isBackward,

boolean isForward, boolean isData, boolean isControl)

1. JFrame frame = new JFrame(“JFrame”);

2. Frame.setSize(300, 300);

3. String str = frame.paramString();

4. System.out.println(frame.getTitle());

Final Report v1.0 Kia Abdullah

April 2003 Page 26 of 50

Option 2: Definitions and Uses

When performing a slice on a variable v at program point p, the slice will include both
assignments and uses of values that v may affect or may be affected by. For
example, using the code fragment given in Figure 19, if we perform a backward slice
on Line 4, we obtain Lines 1, 2 and 3. Line 1 assigns to frame and Lines 2 and 3 use
frame.

This option is particularly useful for program understanding. It helps a programmer
see the flow of control through a program and allows them to examine every line that
uses the variable v in the criteria.

It would be useful to further separate uses of v into two categories:

1. Uses that may change the object in some way.
2. Uses that cannot change the object.

For example, the use of frame on Line 2 changes frame in some way whereas the
use on Line 3 does not. This separation would present the user with an option similar
to Option 2 but would yield a more precise slice. The process of separation would
require examination of the object’s constructor and whether the statement calls a
method that affects one of the data members of the object.

This third option has not been implemented in the JSlicer. Determining whether a use
of an object actually changes it is a long and complex process. After discussion with
the Project Advisor, it was decided that this level of complexity is beyond the scope
of the project. Even if extra time and effort was spent to implement this option, the
trade-off between heightened accuracy and slower slicing may not be worth it.

The separation of the two types of uses is a possible further extension of the JSlicer
and is discussed in more detail in Section 7.2.1 - Future Extensions on Page 34.

5.4.4 View

This package contains all the user interface classes. It is responsible for displaying
information about the model to the user. The GUI methods of the system are
separate from those in the Model in order to keep the API methods fully decoupled
from the GUI methods. This facilitates the re-use of API methods.

Final Report v1.0 Kia Abdullah

April 2003 Page 27 of 50

5.4.5 Controller

The Controller is the interface presented to the user to manipulate the application. It
interprets the mouse and keyboard inputs from the user and commands the model
and/or the view to change as appropriate. Each toolbar and menu item has an
associated Action class in the Controller package. Each Action class has an
actionPerformed() method which carries out the required task.

For example, if the user presses “Open” on the toolbar or menu, the Controller will
take this input command and respond by creating an instance of the OpenAction

class. This class will invoke its actionPerformed() method which calls the

appropriate methods in the IO package.

It is important to note that the same action class is called whether a command is
made through the toolbar or its corresponding menu item. This eliminates the need to
repeat the same code twice. This concept is illustrated by Figure 20.

Figure 20: Menu Items and Toolbar Icons call the same action

5.4.6 IO

The IO Package is responsible for all input and output operations. It receives
commands from the Controller package and sends commands to the View package.

Input
The JSlicer can be used to analyse any java source file as long as it adheres to one
convention: any variable that is not declared or initialised in a method must be
declared at the bottom of the file.

When a java file is opened in the JSlicer, every statement is given a unique number
in order to identify it within the System Dependence Graph. This allows us to map the
nodes in a particular slice back onto the source file. This obviously means that the
number given to a statement in a source file must match the number given to its
corresponding node in the SDG.

The automatic parser generated by ANTLR parses the original java source file, not
the numbered one. It parses all variables that do not belong to a method after it has
parsed all other statements in the java source file. Thus, the nodes created for these
statements will be created after all other nodes. This means that in order to ensure
that the number given to a statement and its corresponding node are consistent; we
must declare the global variables at the bottom of the file after all other statements.

OpenAction

Final Report v1.0 Kia Abdullah

April 2003 Page 28 of 50

Saving and Loading
The system saves the currently open java files; all slice files and the current build of
the SDG in a folder under the name chosen by the user. All java and slice files are
saved in text format. The SDG is saved in serialised format.

The system also creates a .root file for each project. For example, if the user called
the current project “myProject”, the system would create a myProject.root file.
Subsequently, if the user wants to open the project, they can simply open the root file
which opens all files related to the project.

 Figure 21: The Save operation performed by the IO package

Final Report v1.0 Kia Abdullah

April 2003 Page 29 of 50

6. Testing

This stage of the project development cycle involves four types of testing. White box
testing was conducted using JUnit. Black box testing was conducted with test cases
derived from the Specification. User/Beta Testing was carried out be external users.
The fourth type of testing is Stress Testing which was conducted to test the
performance of the system under extreme circumstances.

6.1 Unit Testing

JUnit testing was carried out on the system to ensure that all the API methods
worked correctly. The following types of testing were carried out:

• Correctness Testing – Ensuring each method performs the required operation.

• Error Testing – Testing the effects of invalid arguments being sent to the each
method.

JUnit provides a graphical output of the test results. The following is a screen shot of
the result obtained from testing the Add Criteria feature.

Figure 22: The JUnit results of the “Add criteria” test.

Final Report v1.0 Kia Abdullah

April 2003 Page 30 of 50

6.2 Black Box Testing

Black box testing was focused on the Input-Output behaviour of the system. Test
cases were drawn from the Specification. Each test was conducted with regards to a
particular requirement. If for any given input, we can predict the output, then the
module passes the test. Black box testing helped uncover a number of bugs. The
series of tests were repeated after each error was fixed.

6.3 User/Beta Testing:

User testing was carried out by giving the jar file to external users along with a list of
the functional requirements and asking them to assess the usability of the system.
The ‘external users’ included other computer science students as well as a number
friends and relatives. Feedback from the users helped improve the quality of the non-
functional requirements of the system but did not uncover any bugs.

6.4 Stress/Performance Testing:

The API was stress tested against different numbers of lines of code (LOC) and
increasing depth of method calls.

6.4.1 Performance against LOC

The LOC affects the system as it has to analyse every line of code in order to check
if it should be included in the slice. The graph in Figure 23 shows the LOC against
the execution time of a backward slice operation. The maximum number of LOC that
could be included was two thousand before there was a considerable deterioration in
performance. Please note that these tests were conducted on a set of source files
which did not contain any interprocedural method calls. The performance of the
system with respect to method calls are discussed in the next section.

100 200 500 1000 2000 >2000

1

2

3

4

5

6

7

8

0

9

10

>10

Lines of Code

Figure 23: Execution time of a Backward Slice against LOC

Final Report v1.0 Kia Abdullah

April 2003 Page 31 of 50

6.4.2 Performance against Depth of Method Calls

By the “depth of method calls”, we mean the number of transitive dependencies
between methods in the slice. That is, if we know line A is in the slice and it calls
method B which calls method C which calls method D, the depth of method calls is
three and we must analyse each method.

The graph in Figure 24 shows the depth of method calls against the execution time of
a backward slice operation. The tests corresponding to each “depth” value were run
across a different number of files with the number of LOC varying from 100 to 1000.
The execution times were recorded and averaged to produce the time values shown
in Figure 24. The maximum depth of method calls that could be handled was ten
before there was a considerable deterioration in performance.

Figure 24: Execution time of a Backward Slice against Depth of Calls

Final Report v1.0 Kia Abdullah

April 2003 Page 32 of 50

7. Evaluation

The Evaluation provides an overall review of the system. It measures the success of
the project against the requirements given in the Specification and describes possible
future extensions to the completed system.

7.1 Review of Project

7.1.1 Final System versus Requirements Specification

The requirements specification (Section 4, Page 17) lists fourteen functional
requirements that the completed system was expected to meet. All fourteen
requirements have been successfully incorporated into the final system. The only
requirement that has not been fulfilled to my satisfaction is Requirement 10:

Perform chopping: The system should be able to perform interprocedural chopping
on a given slice criterion.

The final system chops between two program points that belong to the same method
but does not perform interprocedural chopping (i.e. it does not chop across methods).
This is due to time constraints and the fact that sometimes, even the best laid plans
go astray. Though the implementation of this requirement is not entirely satisfactory
on a personal level, it is acceptable as the main aim of the project was to implement
the slicing correctly. All slicing operations and other requirements have withstood
thorough testing and work fully and correctly.

7.1.2 Final System versus the Ideal Solution

The Ideal Solution (Section 3.3, page 16) specifies four key features of the ideal
system. Each key feature is discussed below.

1. Primarily be used as a standalone application but would have all important
methods available as an API that can be used with other programs.

The final system meets this criterion. It is designed to be a standalone application but
all important methods are available as part of an API. The effective use of the MVC
architecture makes reusing the methods easier for third-party programmers.

2. Incorporate a Parser that recognises and parses any Java construct.

The final system uses a combination of a generated parser and a hand crafted
parser. Testing a system like JSlicer is difficult. Every single Java file cannot be
tested as there is a multitude of different ways one can construct a Java statement.
Thorough testing has been carried out with a variety of Java source files including
those created by myself, those taken from the Java sun site as well files created by
fellow students. Though we cannot say with 100% certainty that the Parser can deal
with every single Java construct, it has dealt with every test file correctly and
therefore I can confidently say that it recognises and parses any Java construct.

3. Perform pointer analysis so that complex, indirect dependency relationships can
be identified and navigated easily.

The final system does perform pointer analysis in order to identify complex, indirect
dependency relationships. It takes aliasing into consideration so that changes to an
object through two or more different pointers are detected. It analyses all method
calls in a procedure so that indirect dependencies can be detected and included in
the slice.

Final Report v1.0 Kia Abdullah

April 2003 Page 33 of 50

4. Create accurate slices as efficiently as possible.

The final system does create accurate slices with respect to the two slicing options
(Definitions Only, Definitions and Uses) but could be made more precise with a third
option that includes only those uses of a variable that can change it. Please refer to
Section 4.4.4, Page 25 for details on this third slicing option. Implementing this third
option is a possible future extension of the project and is discussed in detail in
Section 7.2 – Future Extensions.

Another possible extension is to speed up the slicing. The slicing is currently fairly
slow and the performance of the system begins to deteriorate with increasing depth
of method calls. This is also discussed in Section 7.2 – Future Extensions.

Final Report v1.0 Kia Abdullah

April 2003 Page 34 of 50

7.2 Future Extensions

Future extensions to the project could include the following:

7.2.1 Implementing a more precise Slice

Section 4.4.4 on Page 25 describes a third slicing option in which uses of a variable v
which refers to an object can be separated into two categories:

3. Uses that may change the object in some way.
4. Uses that cannot change the object.

This option was not implemented in the final system as it is a long and complex
process which would have slowed down the slicing. This section discusses how one
would begin implementing this option.

In order to distinguish between the two types of use, the System Dependence Graph
would have to be extended to include data members of every object in the files being
sliced. Each use of a variable referring to an object would have to be examined in
order to determine whether it calls a method that changes one of the data members
of the object. Consider a variable frame that refers to a JFrame object. The statement
frame.setSize() would require the examination of the setSize() method in the JFrame
class in order to determine if it changes any data members of the JFrame object.

Liang and Harrold [7] present an SDG for object oriented software that is more
precise than the original SDG. The Liang and Harrold SDG contains the following
vertices:

• The call site contains actual-in data member vertices to represent data
members that are referenced.

• The call site contains actual-out data member vertices to represent data
members that are modified, by the called method.

• The method entry vertex contains formal-in data member vertices to
represent those data members referenced in the method

• The method entry vertex contains formal-out data member vertices to
represent those data members modified in the method.

Like other parameter vertices, the actual-in/-out data member vertices are control
dependent on the method call vertex, and the formal-in/-out data member vertices
are control dependent on the method entry vertex.

Formal-in data member vertices are labelled with assignments that copy the value of
data members from an object into the scope of the method at the beginning of the
method, and formal-out data member vertices are labelled with assignments that
copy the value of data members from the scope of the method into the object at the
end of the method.

Under this approach, the data dependences related to data members of the class in
a method are computed in the same way as the data dependences for a procedure.
This is a complex process that can be implemented in the future in order to obtain
more precise slices. The JSlicer is flexible due to its modular program structure and
can be modified in order to implement this feature.

Final Report v1.0 Kia Abdullah

April 2003 Page 35 of 50

7.2.2 Increasing the Efficiency of the slicing algorithm

Slicing in essence is a slow process so what can one do to speed it up? There has
been some research into this area carried out by Sagiv and Rosay [9]. They have
developed an algorithm which they claim is asymptotically faster than the Horwitz-
Reps-Binkley (HRB) algorithm which was used to implement the JSlicer. The values
listed below are used to express the respective costs of the HRB and Sagiv and
Rosay algorithms

P: The number of procedures in the program.
Sites: The maximum number of call sites in any procedure.
TotalSites: The total number of call sites in the program.
E: The maximum number of control and flow edges in any procedure’s PDG.
Params: The maximum number of formal-in vertices in any procedure’s PDG.

The cost of interprocedural slicing using the HRB algorithm is denoted by:

O((TotalSites × E × Params) + (TotalSites × Sites² × Params^4)).

The cost of the algorithm developed in [9] is bounded by:

O((P × E × Params) + (TotalSites × Params³)).

Under the assumption that the total number of call sites in a program is much greater
than the number of procedures, each term of the cost of the new algorithm is
asymptotically smaller than the corresponding term of the cost of the HRB-summary
algorithm. Implementing the Sagiv and Rosay algorithm rather than the more
established HRB algorithm could serve to make the slicing faster. Implementing this
algorithm is a possible future extension of the JSlicer.

Final Report v1.0 Kia Abdullah

April 2003 Page 36 of 50

8. Conclusion

The final version of the system successfully meets the aims and objectives of the
project outlined at the beginning of the report. The JSlicer has been implemented
successfully and adheres to the Specification set out in Section 4. It closely follows
the criteria set out for an ideal solution and has proved to be a genuinely useful tool
as I have used working versions to locate semantic errors in my own programming.

The project has proved to be an extremely challenging endeavour but at the same
time, it has been immensely rewarding. It has given me an opportunity to improve my
programming and design skills. It has enhanced my confidence and capability to
investigate, analyse and design software systems. I have researched into and
implemented design patterns and now know the importance of good program
structure when developing a stable but flexible application.

During the course of the project, I have developed a genuine interest in program
slicing and the wider field of program analysis. Whilst researching this field, I came
across various program analysis tools but was surprised to see that there were not
any program slicing tools for java programs. There is plenty of research into the field
and therefore I had access to a multitude of research material but there were no
applications which actually applied all this research. I was initially daunted by this fact
but it also motivated me as it was a challenge. As a result, I have produced a tool
that is both unique and useful and I am genuinely proud of my achievements.

Final Report v1.0 Kia Abdullah

April 2003 Page 37 of 50

9. References

Research Papers:

[1] Anderson, P., Teitelbaum, T. Dependence Graphs and Program Slicing.

CodeSurfer Technology Overview, 2001.

[2] Anderson, P., Teitelbaum, T. Software Inspection Using CodeSurfer. Proceeding

of the First Workshop of Inspection in Software Engineering, 2001.

[3] Chen, Z., Baowen, X. Slicing Object Oriented Java Programs. ACM SIGPLAN

Notices, 2001.

[4] Dwyer, M. Extracting Finite-state Models from Java Source Code. International

Conference on Software Engineering. 2000.

[5] Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using dependence

graphs. ACM Transactions on Programming Languages and Systems 12, 1990,

[6] Horwitz, S., Reps, T. The Use Program Dependence Graphs in Software

Engineering, Proceedings of the 14th International Conference on Software
Engineering, 1992.

[7] Liang, D., Harrold, M. Slicing Objects Using System Dependence Graph.

Proceedings of the International Conference on Software Maintenance, 1998.

[8] Ottenstein, K., Ottenstein, L. The program dependence graph in a software

development environment. Proceedings of the conference on Programming
language design and implementation, 1990.

[9] Sagiv, M., Rosay, G. Speeding up Slicing. Proceedings of the ACM SIGSOFT
 Symposium on the Foundations of Software Engineering. 1994.

[10] Tip, F. A Survey of Program Slicing Techniques. Journal of Programming

Languages, 3(3):121-89, 1995.

[11] Weiser, M. Program slicing. IEEE Transactions on Software Engineering, 1984.

Web-sites:

[12] ANTLR: www.antlr.org

[13] Artima: www.artima.com/designtechniques

[14] Bandera: www.cis.ksu.edu/santos/bandera/papers/slicing.html

[15] CodeSurfer: www.grammatech.com

[16] Pattern Depot: www.patterndepot.com/put/8/JavaPatterns.htm

[17] Research Index: http://citeseer.nj.nec.com

[18] T. Reps: www.cs.wisc.edu/~reps/

Final Report v1.0 Kia Abdullah

April 2003 Page 38 of 50

Appendix A – User Manual

Contents

1. Getting Started ………………………………………………………………………. 39
 1.1 Toolbar …………………………………………………………………………… 40
 1.2 Menus ……………………………………………………………………………. 40
 1.3 File Viewer ………………………………………………………………………. 41
 1.4 Source Viewer …………………………………………………………………... 41
 1.5 Status Bar ……………………………………………………………………….. 42
2. New: Building a Project …………………………………………………………….. 43
3. Open and Browse …………………………………………………………………… 43
 3.1 Open ……………………………………………………………………………… 43
 3.2 Browse …………………………………………………………………………… 43
4. Saving ………………………………………………………………………………… 44
5. Build a System Dependence Graph ………………………………………………. 44
6. Criteria ………………………………………………………………………………... 44
 6.1 Choose Criteria …………………………………………………………………. 44
 6.2 Clear Criteria ……………………………………………………………………. 44
7. Slicing Operations …………………………………………………………………… 45
 7.1 Predecessors ……………………………………………………………………. 45
 7.1 Successors ………………………………………………………………………. 45
 7.3 Backward Slicing ………………………………………………………………... 45
 7.4 Forward Slicing ………………………………………………………………….. 46
 7.5 Chopping ………………………………………………………………………… 46

Final Report v1.0 Kia Abdullah

April 2003 Page 39 of 50

A1. Getting Started

This User Manual accompanies the JSlicer Program Slicing Tool. It can be used to find
out about the various features of the JSlicer. To get you started, we shall go through the
basic components of the user interface. Figure A1 below shows a labelled screenshot of
the first screen you will see when you run the JSlicer. Each subsection of Section A1
describes each of the labelled components shown below.

Figure A1: The First Screen

Toolbar File Viewer Source Viewer Menu bar

Final Report v1.0 Kia Abdullah

April 2003 Page 40 of 50

A1.1 Toolbar

The toolbar is a collection of buttons that you use to carry out commands. Each button on
the toolbar shown in Figure A2 is described briefly in this section. For a more detailed
explanation of each command, please see the respective sections.

Figure A2: The JSlicer Toolbar

 New: Starts a new JSlicer project.

 Open: Can be used to open existing Java files, slice files or projects

 Save: Can be used to save an individual slice file in a chosen directory.

 Save All: Saves the current project in a chosen directory.

 Build SDG: Builds the System Dependence Graph.

 Add Criteria: Adds the variables at a selected statement to the criteria.

 Clear Criteria: Can be used to clear all criteria that have been set so far.

 Backward Slicing: Backward slices the currently open Java files.

 Forward Slicing: Forward slices the currently open Java files.

 Chopping: Performs chopping on the currently open Java files.

 Predecessors: Determines the Successors of the set criteria using the SDG.

 Successors: Determines the Successors of the set criteria using the SDG.

 Print: Prints the current Java file or Slice file.

 Help: Starts up the Help system but of course, you already knew that!

 Close Project: Closes the current project.

A1.2 Menus

There are three main menus of the JSlicer.

The ‘File’ menu can be used to perform all basic File operations such as open and save.

 The ‘Slicing’ menu can be used to perform all the main Slicing operations. For details
on what each of the slicing commands do, please see Section 7 - Slicing Operations.

The ‘Help’ menu can be used to start up the Help System.

Final Report v1.0 Kia Abdullah

April 2003 Page 41 of 50

A1.3 File Viewer

Figure A3: The File Viewer

A1.4 Source Viewer

The Source Viewer is used to view the contents of a Java source file or a Slice file.

Figure A4: The Source Viewer

The bottom component of the File Viewer
shows every method and global variable
contained within the file that is currently
open in the Source Viewer.

The top component of the File Viewer
summarises every open Java file and every
Slice file contained within the current
project. Clicking on a file name will open
the corresponding file in the Source Viewer.

Final Report v1.0 Kia Abdullah

April 2003 Page 42 of 50

A1.5 Status Bar

Figure A5 shows a screenshot of the JSlicer after a Backward Slice has been performed
on the file UIFrame.java. It is the Status Bar’s job to provide you with a summary of the
most recent slice that has been performed. The Status Bar is situated at the bottom of the
application as shown in Figure A5.

Figure A5: The JSlicer after a Backward Slice has been performed

As you can see from Figure A6, the Status Bar provides the following information:

• The number of java files open in the current project.

• Whether the SDG Build is up to date or not.

• The current Criteria if it has been set.

• A summary of a slice including the type of slice that was performed and the
number of files that the slice cuts across.

Figure A6: The Status Bar

Final Report v1.0 Kia Abdullah

April 2003 Page 43 of 50

A2. New: Building a Project

A JSlicer “project” consists of four types of files. These are described below:

Java Source Files: You can open existing Java source files in the JSlicer which can then
be used to build the SDG and perform slicing operations. In order to save a new project,
it must consist of at least one Java source file.

An SDG: This is built from the Java source files contained within the current project. The
most recent SDG built is saved as part of the project.

Slice Files: A Slice File is created by performing a Slice Operation on the SDG. Any
generated Slice Files are saved as part of a project.

Root File: This is a file generated automatically by the JSlicer each time you save a new
project. Instead of opening the different files in a project separately, the root file can be
used to open the project and all files contained within it.

You can set up a new project by following these simple steps:

1. Press the “New” button on the toolbar. (Or “New” in the “File” menu).

2. The JSlicer will close any current projects and an empty canvas will appear in the
Source Viewer.

3. You are now ready to Open Java source files. After opening at least one Java
file, you can Build the SDG, perform Slicing Operations and/or Save the
project.

A3. Open and Browse

A3.1 Open

You can follow the steps described below to open a set of Java source files for a new
project or to open an existing project.

1. Press the “Open” button on the toolbar. (Or “Open” in the “File” menu). The
system will display a filechooser.

2. If you wish to open Java source files for a new project, select all the files you want to
include in the project and press “OK”. The files will be displayed in the Source
Viewer.

3. If you wish to open an existing project, use the filechooser to navigate to the correct
directory, select the .root file and press “Ok.” This will open the project and will allow
you to view all the java files and slices contained within the project.

A3.2 Browse

You can browse a project using the tree in the File Viewer. This tree lists every Java file
and Slice contained within the current project. Selecting a file name in the tree will open
the file in the Source Viewer. This makes browsing the different files easier.

Final Report v1.0 Kia Abdullah

April 2003 Page 44 of 50

A4. Saving

You can follow the steps described below to save a project.

1. Press “Save All” on the toolbar (Or “Save All” in the “File” menu).

2. This action will cause the system to display a Save Filechooser.

3. Simply type in the name which you wish to save the project under and press ‘OK’.
This will save all open Java source files, the most recent SDG Build and any Slice
files to a folder with the chosen name.

To save an individual Java source file or slice file, press the “Save” button on the
toolbar or the “Save File” option on the “File” Menu.

A5. Build a System Dependence Graph (SDG)

To build the System Dependence Graph, press the “Build SDG” button on the toolbar
or select the “Build SDG” option from the “Slicing” menu. The system will process all the
Java files contained within the current project. Once it has been completed, the Status
Bar will display the following message: “SDG Build: Current”.

Adding Java files to the project will require an SDG Rebuild therefore the Status Bar
message will change to “SDG Build: Rebuild Required.”

A6. Choose Criteria

A6.1 Choose Criteria

To set the Criteria, follow these simple steps:

1. Make sure that the SDG is up to date by reading the message displayed in the Status

Bar. This will read either “SDG Build: Current” or “SDG Build: Rebuild Required.”

2. Select the line that contains the variable(s) which you want to slice on.

3. Press the “Add Criteria” button on the toolbar. (Or the “Add Criteria” option in the
“Slicing” menu).

4. The “Choose Criteria” dialog box will be displayed. This dialog lists all the variables
that can be sliced upon in the selected statement.

5. Select the variable(s) you want to slice on and press “Ok”. The system will set this as
the criteria. Notice that the Status Bar message will show you what the current
Criteria are.

6. You are now ready to perform Slicing using the SDG and criteria.

A6.2 Clear Criteria

To clear the current Criteria, simply press the “Clear Criteria” on the toolbar or press
the “Clear Criteria” option in the “Slicing” menu. You can confirm that the Criteria have
been cleared by checking the Status Bar message.

Final Report v1.0 Kia Abdullah

April 2003 Page 45 of 50

A7. Slicing Operations

There are five main Slicing Operations that can be performed using the JSlicer. This
section explains how to carry out each of these five operations.

A7.1 Predecessors

To determine the Predecessors of a variable, follow these simple steps:

1. Make sure that the variable has been set as the criteria.

2. Go to the “Slicing” menu and then to the “Predecessors” sub-menu OR press the
“Predecessors” button on the toolbar.

3. You then have three options. You can choose to view the “Data Predecessors”,
“Control Predecessors” or “All Predecessors”.

4. After choosing one of these options, the Predecessors of the criteria will be
highlighted in any Java source file that contains a Predecessor. The Status Bar will
provide information on which files contain Predecessors.

A7.2 Successors

To determine the Successors of a variable, you can use the following two options.

1. Make sure that the variable has been set as the criteria.

2. Go to the “Slicing” menu and then to the “Successors” sub-menu OR press the
“Successors” button on the toolbar.

3. You then have three options. You can choose to view the “Data Successors”,
“Control Successors” or “All Successors”.

4. After choosing one of these options, the Successors of the criteria will be highlighted
in any Java source file that contains a Successor. The Status Bar will provide
information on which files contain Successors.

A7.3 Backward Slicing:

To perform Backward Slicing, you must complete the following steps:

1. Make sure that the SDG is up to date.

2. Set the Criteria.

3. Press the “Backward Slicing” button on the toolbar or the “Backward Slicing”
option in the “Slicing” menu.

4. The system will calculate which Java files contain code that should be included in the
slice. A “Slice File” corresponding to each of these Java files will be made. A slice file
basically consists of all the original Java source code but simply highlights all the
code that is in the Slice.

5. A new window for each Slice File will be displayed in the Source Viewer. The Status
bar will provide information on how many statements are in the slice and how many
java files were involved (i.e. how many Slice Files were produced).

Final Report v1.0 Kia Abdullah

April 2003 Page 46 of 50

A7.4 Forward Slicing:

To perform Forward Slicing, you must complete the following steps:

1. Make sure that the SDG is up to date.

2. Set the Criteria.

3. Press the “Forward Slicing” button on the toolbar or the “Forward Slicing” option
in the “Slicing” menu.

4. The system will calculate which Java files contain code that should be included in the
slice. A “Slice File” corresponding to each of these Java files will be made. A slice file
basically consists of all the original Java source code but simply highlights all the
code that is in the Slice.

5. A new window for each Slice File will be displayed in the Source Viewer. The Status
bar will provide information on how many statements are in the slice and how many
java files were involved (i.e. how many Slice Files were produced).

A7.5 Chopping:

To perform Chopping, you must complete the following steps:

1. Make sure that the SDG is up to date.

2. Set the Criteria.

3. Press the “Chopping” button on the toolbar or the “Chopping” option in the
“Slicing” menu.

4. The system will calculate which Java files contain code that should be included in the
slice. A “Slice File” corresponding to each of these Java files will be made. A slice file
basically consists of all the original Java source code but simply highlights all the
code that is in the Slice.

5. A new window for each Slice File will be displayed in the Source Viewer. The Status
bar will provide information on how many statements are in the slice and how many
java files were involved (i.e. how many Slice Files were produced).

Final Report v1.0 Kia Abdullah

April 2003 Page 47 of 50

Appendix B – Design Document

The Design Document contains the class diagrams for the Model.Builder and
Model.Slicer packages as they are the most important components of the system.

Figure B1: The Model.Builder Class Diagram

MainBuildMainBuildMainBuildMainBuild

+sdg:SDG

+collectPDGs:void

 SDG:SDG

DefaultMutableTreeNode
Serializable

NodeNodeNodeNode

isTopNode:boolean
isLoopNode:boolean
hasThis:boolean
tempP:Vector

+Node
+fillTemp:Vector
+doesDefineSomething:boolean
+hasThis:boolean
+toString:String
+addUse:void
+addParameter:void
+isSame:boolean
+addHeadEdge:void
+addTailEdge:void

 lineNum:int
 statement:String
 top:boolean
 inLoop:boolean
 PDGParent:String
 defines:String
 uses:Vector
 calls:String
 parameters:Vector
 minusID:String
 isTop:boolean
 headEdges:Vector
 tailEdges:Vector
 className:String
 ID:int

Serializable
SDGSDGSDGSDG

Record:Vector
cTorRecord:Vector
makingCall:Node
callingTop:Node
calledTop:Node
extraNode:Node
actInNode:PNode
actOutNode:PNode
formalInNode:PNode
formalOutNode:PNode
callingPDG:PDG
calledPDG:PDG
callingString:String
calledString:String
actParam:String
formalParam:String
needNewDef:boolean
extraParam:boolean
callingNodes:Vector
toTake:Vector
callingEdges:Vector
calledNodes:Vector
calledEdges:Vector
allPEdges:Vector
+sdgNumFiles:int

+SDG
+setupParameterInNodes:void
+getPString:String
+createInNodes:void
+resetActInDeps:void
+resetFormalInDeps:void
+createOutNodes:void
+resetActOutDeps:void
+getSpecificPDG:PDG
+getCallingPDG:PDG
+getCalledPDG:PDG
+checkSDG:void
+reset:void
+resetAll:void
+resetSDGnumFiles:void
+UpToDate:int
+isPrimitiveType:boolean
+getAllReachingDefs:Vector
+doAdd:boolean
+fillEveryNode:void
+addCallEdge:void
+inCTor:boolean
+alreadyInConstructorEdges:boolean
+addConstructorEdges:void
+getGlobalParams:Vector
+addGlobalParamDataEdge:void

 sgdNumFiles:int
 everyNode:Vector
 PDGList:Vector
 PEdgeList:Vector
 allConstructorEdges:Vector
 allCallEdges:Vector
 constructorRecord:Vector
 callRecord:Vector

Serializable
EdgeEdgeEdgeEdge

+Edge
+isSame:boolean

 head:SimpleNode
 tail:SimpleNode
 data:boolean
 control:boolean
 parameterIn:boolean
 parameterOut:boolean
 variableDep:String

JTree
Serializable

PDGPDGPDGPDG

nodeList:Vector
dataEdgeList:Vector
controlEdgeList:Vector
globalEdgeList:Vector
globalVarList:Vector
useList:Vector
PDGName:String
usesToo:boolean
reDefined:boolean
localReDefined:boolean
reset:boolean
allNodes:Vector
tempData:Vector
tempControl:Vector
tempGlobal:Vector
nodeStore:Vector
removedUses:Vector
+top:Node
-attribute1:int

+PDG
+magic:void
+createDataEdges:void
+useCut:boolean
+shallIAdd:boolean
+shallAdd:boolean
+expandTops:void
+exists:boolean
+toAddEdge:boolean
+createControlEdges:void
+addDataEdge:void
+addControlEdge:void
+addGlobalEdge:void
+addNode:void
+getProperNode:Node
+getChild:Node
+getPDGName:String
+setEdgeHead:void
+setEdgeTail:void
+isGlobalUsed:boolean
+getInit:String
+addBackwardDeps:void
+isWhile:boolean
+ifStatement:boolean
+isIf:boolean
+isElse:boolean
+ifElse:boolean
+definesMultiple:boolean
+getTopDefs:Vector
+useSameVar:boolean
+redefBoth:boolean
+isElseIf:boolean
+hasJustDeclaration:boolean
+addDeclarationEdges:void
+expandDeclarationTops:Vector
+addGlobalDeclarationEdges:void
+isAncestor:boolean
+isIf:boolean
+usesThis:boolean
+inGlobalVarList:boolean

 dataEgdes:Vector
 globalEdges:Vector
 controlEdges:Vector
 nodes:Vector
 tree:JTree
 PName:String
 name:String
 globalVars:Vector
 globalDefList:Vector
 globalUseList:Vector
 className:String

DefaultMutableTreeNode
Serializable

PNodePNodePNodePNode

headEdge:Vector

+PNode
+toString:String
+isSame:boolean
+addHeadEdge:void
+addTailEdge:void

 statement:String
 defines:String
 actIn:boolean
 actOut:boolean
 formalIn:boolean
 formalOut:boolean
 uses:String
 lineNum:int
 minusID:String
 headEdges:Vector
 tailEdges:Vector
 className:String
 ID:int

interface
SimpleNodeSimpleNodeSimpleNodeSimpleNode

+toString:String
+isSame:boolean
+addHeadEdge:void
+addTailEdge:void

 statement:String
 defines:String
 minusID:String
 lineNum:int
 headEdges:Vector
 tailEdges:Vector
 className:String
 ID:int

Final Report v1.0 Kia Abdullah

April 2003 Page 48 of 50

Figure B2: The Model.Slicer Class Diagram

ChopChopChopChop

sdg:SDG
c:Criteria
criteriaRecord:Vector
sliceNode:Node
allChopNodes:Vector
allNodes:Vector
pdgList:Vector
allEdges:Vector
BConnected:Vector

+Chop
+createClassName:String

 ABConnected:Vector
 className:String

Serializable
CriteriaCriteriaCriteriaCriteria

atNode:Node

+Criteria

 node:Node
 variable:String

SliceSliceSliceSlice

marker:int
sdg:SDG
cRecord:Vector
sliceNode:Node
sliceString:String
c:Criteria
backward:boolean
forward:boolean
isData:boolean
isControl:boolean
nodes:Vector
dataEdges:Vector
controlEdges:Vector
globalEdges:Vector
constructorEdges:Vector
slicedCriteria:Vector
slicedNodes:Vector
cNames:Vector
globalVars:Vector
allPredSucc:Vector
marked:Vector
pEdges:Vector
allCallNodes:Vector
originalSliceNode:Node
setSliceNode:boolean

+Slice
+startSlice:void
+createSlice:Vector
+alreadySliced:boolean
+sortOutCalls:void
+doesAffectInclude:boolean
+getMakingCall:Node
+getCriteriaFromNode:Vector
+affectsSliceVar:boolean
+inFinalStore:boolean
+calledByAnotherMethod:boolean
+callsAMethod:String
+getFirstUsesOfParameter:Vector
+getFirstChange:Node
+inSlicedCriteria:boolean
+addTocNames:void
+hasGlobalEdge:boolean
+hasConstructorEdge:boolean
+addCriteriaToTempStore:void
+initialiseNodesEdges:void
+shouldAdd2:boolean
+getCalledPDG:PDG
+addParent:void
+inConstructor:boolean
+inCTor:boolean
+allPrimitive:boolean

 finalStore:Vector
 predecessors:Vector
 successors:Vector
 callNodes:Vector

Final Report v1.0 Kia Abdullah

April 2003 Page 49 of 50

Appendix C – System Manual

An API containing information about all the packages, classes and methods in the
JSlicer has been created. A screenshot of this is shown in Figure C1. The complete
API can be found in the “API” folder on the CD that has been handed in as part of the
final deliverable.

Figure C1: Screenshot of the JSlicer API

Final Report v1.0 Kia Abdullah

April 2003 Page 50 of 50

